
Postscript Halftones

http://www.grymoire.com/Postscript/Halftones.html[06/12/14 12:53:31]

Grymoire
 Navigation

Unix/Linux
Quotes
Bourne Shell
C Shell
File Permissions
Regular Expressions
grep
awk
sed
find
tar
inodes

Security
IPv6
Wireless

Hardware
spam

Deception
PostScript

Halftones
Privacy

Bill of Rights
References

Top 10 reasons to avoid CSH
sed Chart PDF
awk Reference HTML

Magic
Search
About
Donate

Google+: Bruce Barnett

Twitter: @grymoire

 Copyright 2007, by Bruce Barnett

Part of my tutorials on computers

Note - this is based on an article I wrote for Flash magazine.
The drawings are currently missing.

Halftones on PostScript printers

I've read about halftones for years, yet always felt uncomfortable the
more I read. Halftone screens were device dependent. Mortals were
not suppose to play with them. Leave that to the experts - say the

manuals. Some ignored the advice and experimented anyway. Don
Lancaster said in the July 1990 issue of Byte magazine that there were
22 different halftone frequency/angle screens available on a 300
 DPI
PostScript printer, and most people are only aware of a few. He
mentioned that an angle of 35 degrees, and frequency of 85 was a good
combination for reproduction. And that the 45 degree, 106 LPI
 was the
best gray, if you wanted a single gray value. Where do they get these
numbers? Out of thin air, I thought. Suppose I have a 600 or 1200 DPI
printer. Which halftone screen will allow me to
 reproduce the best
Black and White photograph? Which combination should I use?

To aggravate the situation, some printers, like the Apple
LaserWriters, have a PhotoGrade feature, which produces more gray
values than a regular printer, or so they say. Other printers, such
as the HP,
 have different features that may also improve print
quality.

If that's not enough, there are several different spot functions that
can be used: spot, ellipse, rhomboid, line. You can also use FM and
and stochastic screening. How can one choose from all of these

combinations?

Don't let me scare you away. I can help.

I can't tell you what is the best halftone screen. There really are a
lot of variables, and no single value is best for everybody. So I
can't answer all of your questions. I can, however, answer some
questions.
 I can also provide you with some tools you can use to
experiment, and find the best halftone screen for your own use. This
does requiring knowing PostScript. But before I do, I have to give you
some
 background, which I hope you will find useful even if you never
intend to use the techniques I am going to discuss.

How can mere mortals change halftone screens?

Using programs like Photoshop, you can define custom halftones.
Adobe Illustrator allows you to create a "riders" file, with an
optional plug-in supplied with the program. Adobe Separator Utility
allows you
 to specify custom halftone screenings. You can also edit
the PPD file for a printer, which will change the default screening
for any application. And if all else fails, you can send your
PostScript output to a
 file, instead of the printer. Then you can
edit this file, and send the file directly to the printer. Before I
describe this, you need some background in halftone theory.

What are Halftones?

Someone once described stochastic or FM screening as digital, and
Halftone screening as analog. Originally, halftone screening is an
analog technique, which really means there are large number of values

between black and white. But on a PostScript printer, all halftones
are digital. Some just look more digital than others.

In a PostScript Level 1 printer, there is just one type of halftone or
screen function. There are three parts that must be specified:

Frequency
Angle
Spot Function

Frequency

Let's explore these in more detail. Since each black and white
printer only has two colors, all shades of gray are approximated.
This is done by creating a cell larger than a single pixel. A
two-by-two cell
 has four spaces. The number of spots in this cell is
zero through four, or five different combinations of black and white.
There are more, as a single dot can be placed in four different
positions in a two-by-
two cell. However, each variation has the same
approximate color: 1/4th black. These four variations of a cell with a
single dot are not very useful: the level of gray remains the same.

The bigger a cell is, the larger the number of combinations. A
three-by-three cell has nine pixels, so therefore has ten different
shades of gray. A four-by-four cell has 17 shades of grade,
five-by-five has
 26 shades. In general, the number of shades of gray
in a square cell is n*n+1, where n is the width of a cell. This
diagram shows some cells with various shades of gray. (See diagram
#1)

Note that the cell is typically filled first in the middle, and the
number of cells increase as a darker shade of gray is desired. The
frequency, or lines per inch, is the number of cells per inch.
Increase the
 frequency, and the cells get smaller, allowing more
detail, and less shades of gray. If the cell is aligned with the grid
of the printer (i.e. the angle is 0), the relationship between cell
size and frequency is
 easy to understand.

	 Cell width * frequency = printer resolution

or

	 Printer resolution/frequency = cell width

or

	 Printer resolution/cell width = frequency

A cell that is one-by-one (admittedly not very useful) allows 300
cells per inch on a 300 DPI printer. A two-by-two cell is twice the
size, and half the frequency (150). A cell that is five pixels wide
on a 300
 DPI printer is five times wider, and therefore has a
frequency of 300/5 or 60 cells per inch, or as they typically say, 60
lines per inch. These tables might make things clearer:

300 DPI Printer, angle = 0 degrees
Lines per inch Cell Width Shades of gray
(Frequency) (300/frequency) (cell width * cell width +1)
300 1 2
150 2 5
100 3 10
75 4 17
60 5 26
50 6 37
42.86 7 50
30 10 101
19.75 16 >256

600 DPI Printer, angle = 0 degrees
Lines per inch Cell Width Shades of gray
(Frequency) (600/Frequency) (cell width * cell width +1)
600 1 2
300 2 5
200 3 10
150 4 17
120 5 26
100 6 37
75 8 65
60 10 101
37.5 16 >256

http://www.grymoire.com/Unix/index.html
http://www.grymoire.com/Unix/Quote.html
http://www.grymoire.com/Unix/Sh.html
http://www.grymoire.com/Unix/Csh.html
http://www.grymoire.com/Unix/Permissions.html
http://www.grymoire.com/Unix/Regular.html
http://www.grymoire.com/Unix/Grep.html
http://www.grymoire.com/Unix/Awk.html
http://www.grymoire.com/Unix/sed.html
http://www.grymoire.com/Unix/Find.html
http://www.grymoire.com/Unix/Tar.html
http://www.grymoire.com/Unix/Inodes.html
http://www.grymoire.com/Security/index.html
http://www.grymoire.com/Security/IPv6.html
http://www.grymoire.com/Security/Wireless.html
http://www.grymoire.com/Security/Hardware.html
http://www.grymoire.com/Spam/index.html
http://www.grymoire.com/Deception/index.html
http://www.grymoire.com/Postscript/index.html
http://www.grymoire.com/Privacy/index.html
http://www.grymoire.com/Privacy/BillOfRights.html
http://www.grymoire.com/References.html
http://www.grymoire.com/Unix/CshTop10.txt
http://www.grymoire.com/Unix/SedChart.pdf
http://www.grymoire.com/Unix/AwkRef.html
http://www.grymoire.com/magic.html
http://www.grymoire.com/Search.html
http://www.grymoire.com/About.html
http://www.grymoire.com/Unix/donate.html
https://plus.google.com/u/1/+BruceBarnett?rel=author
https://twitter.com/#%21/grymoire
http://www.grymoire.com/computers.html

Postscript Halftones

http://www.grymoire.com/Postscript/Halftones.html[06/12/14 12:53:31]

It should be clear that the more lines per inch you have, the greater
the resolution, but fewer shades of gray. In general, you would like
to select the finest resolution needed for the number of shades of

gray necessary. If you only have 3 shades to worry about (black,
white, 50% gray) you can use a large frequency without losing shades
of gray. If you need 256 shades of gray, use a lower frequency.
 Note
that the frequency does not have to be an integer. However, each
printer has a specific resolution, and selecting resolutions in
between may not have any effect.

If you want to determine the needed resolution, you can think of a
cell that is 16 by 16 pixels in size, This is large enough to describe
16*16 or 256 different gray levels - the maximum number of grays in
 a
Level 1 PostScript printer. Steve Roth calls this the Rule of
Sixteen. Why sixteen? Since 256 gray values require a 16 by 16 cell,
divide the DPI by 16 to get the frequency needed to obtain 256
different
 gray values. Another way to view this is with the following
table:

Maximum frequency needed to obtain 256 different gray values

DPI of printer Frequency
(DPI/16)

300 18.75
600 37.5
900 56.25
1000 62.5
1200 75
2400 150

So if you want a frequency of 100, and need 256 values of gray, a 1200 dpi imagesetter can't generate a sufficient number of grays with an angle of 0. You need a higher resolution imagesetter.

Angles

Did you notice I added "with an angle of 0" above? This is important,
as you will see. I didn't include it to prevent lawsuits, and nasty
letters to the editor. Using angles different than zero changes the
rules
 a bit. Quite a bit, as it turns out. This particular concept
puzzled me, and I investigated this further. For instance, Apple's
Laser Writer Utility allows you to select the following combinations:

Frequency 53 75 83 106 150
Angle 45 0 56 45 0

The combinations to the left gave better values of gray, while the
combinations on the right gave better resolution. These numbers are
most confusing. Why were these particular angles selected? And how

many shades of gray does each one generate? To explain, I have to show
some pictures and even discuss (shudder) trigonometry. Don't fret. I
include lots of pictures and tables for those who wish to avoid
 a
repetition of high-school tramas.

A better angle on Halftones?

Some halftone screens have an angle of 0. This simply means the cell
that is used to construct a halftone done is oriented the same way as
the dots on the printer. The trouble is, halftone screens with this

alignment generates artifacts that are very noticeable. The human eye
tends to see the linear arrangement of dots. A higher resolution hides
this, of course, but so does changing the angle.

Some consider 45 degrees as the best angle to use. The halftone dots
are drawn on the diagonal, which many feel hides the digital patterns
best. What about the other angles?

There are speed and efficiency advantages to using angles that are
easy to calculate. There are also only a few fixed choices, as you
cannot move the pixels around on the printer. Also remember that

rotating a square 90 degrees has no effect. These facts explain why
certain angles are more popular than others. 30 degrees and
approximately 15 degrees are two angles that are efficiently
calculated. (I'll
 explain more about this later). Since a
one-quarter turn has no effect or a square grid, rotating a square 120
degrees is the same as rotating it 30 degrees.

If an angle is efficiently calculated, the mirror image is just as
easy to calculate. This just changes the horizontal and vertical
axis. A mirror image angle is found by subtracting the angle from 90.
In the
 case of 30, this is 60, and in the case of 15, this is 75.
Therefore the following angles are equivalent:

Equivalent angles

Root angle Equivalent angles
0 90 180 270
15 105 195 285
30 120 210 300
45 135 225 315
60 150 240 330
75 165 255 345

Because 90 minus 75 is 15, 75 and 15 produce the same frequencies when
used as halftones. Therefore any frequency that works for 75 will
also work for 15, 105, 195 285, 165 255 and 345. The same
 goes for 30
degrees, and 120, 210, 300, 60, 150, 240, and 330. So while the above
table lists 24 different angles, there are only 4 that are different
for halftones usage (i.e. 0, 15, 30 and 45).

Why are there so many combinations? Who cares, you might ask? Well,
you should, especially if you print in color. One important use of
halftone screens is dividing a document into 4 separate colors or

screens for printing purposes. Adobe Separator does this, and
generates transparencies for the four basic colors: Black, Magenta,
Cyan and Yellow. Each color is printed as a single step, and four
colors
 simulate the infinite combinations in reality. Proper halftones
screens are a critical step in this process, and bad halftones can
ruin a print job.

Moirés

If you have ever placed two identical screens on top of one another,
you would notice patterns appear when you twist one of the
screens. These patterns are moirés. If you had two screens, one 30
LPI and
 one 31 LPI, the difference would be 1 LPI. That is, every inch
you would see a new "beat" frequency appear. Theoretically, each color
could have the same halftone screen angle. However, this is
unstable.
 The alignment has to be perfect for this to work. A slight
registration error, 1 degree or smaller, can cause moiré patterns
to form. Therefore using the same halftone screen for each of the four
colors is a
 bad idea. The larger the angle between screens, the harder
it is to see these moiré patterns. The best pattern for printing is
called the "rosette." This generates a moiré pattern, but it is
hard to see. This
 rosette pattern can be accomplished by using 3
screens 30 degrees apart. But what about the fourth color? If you used
angles 0, 30, and 60, the next angle would be 90, which is the same as
0. Therefore
 using angles 0 and 90 in the same print job produces
undesirable moiré patterns.

Why not make the angles more than thirty degrees? Why not use 45
degrees? If the first color has at 0 degrees, and the second was at 45
degrees, then the third would be at 90 degrees and the fourth at
 135
degrees. Do you see the problem? Remember that rotating a square grid
90 degrees has no effect. Therefore 90 is the same as 0, and 135 has
the same as 45. Therefore (0, 45, 90, 135) is the same
 as (0, 45, 0,
45). In other words, there are two unstable combinations that will
produce moiré patterns.

If you can't pick larger angles, then smaller angles should solve the
problem. Buy here's the catch: the smaller the angle, the more likely
a moiré pattern will occur. So how are these angles chosen?

Adobe's Separator program (packaged with or part of Illustrator) selects a
"proper" halftone screen for each color. In their Technote #4221,
Adobe suggests the following angles:

Black 45 degrees
Cyan 15 (or 105) degrees
Magenta 75 (or 165) degrees
Yellow 0 (or 90) degrees

Let's see how this works. Black is given 45 degrees because it is
considered the best angle, and most of the time black is the most
important color. If you have an important process color, it could be
at 45
 degrees instead. Cyan and Magenta are 30 degrees away from
black, to reduce the risk of moiré patterns. Yellow is 15 degrees
away from Magenta and Cyan, so some moiré patterns might be
noticed.
 Yes, 15 degrees difference is risky, as this is detectable.
Yellow was chosen for this reason, as it is less noticeable than the
other colors in many print jobs. In addition, Adobe suggests you
change the
 frequency of yellow, making it 8 percent larger or smaller,
to help further eliminate moiré patterns.

The other reason for different frequencies besides 45 is the impact on
number of pixels in a cell. A diagram will help. Let me show you an
array of pixels, and how a 45 degree angle fits on this array:
(see
 diagram #2)

Notice the number of pixels in this strange shaped cell. You have to
imagine a theoretical cell, placed over the grid of the printer. Only
those cells that fall inside the theoretical cell are used to
construct the
 halftone cell. As you can see, the number of pixels in a
45 degree cell varies, depending on the size of the cell. The table
below lists these values:

45 degree cells
x y Cell Width Pixels in cell Number of gray values
1 1 1.4142 2 3
2 2 2.8284 8 9
3 3 4.2426 18 19
4 4 5.6569 32 33

Postscript Halftones

http://www.grymoire.com/Postscript/Halftones.html[06/12/14 12:53:31]

5 5 7.0711 50 51
6 6 8.4853 72 73
7 7 9.8995 98 99
8 811.3137 128 129

What about other angles?

Earlier I mentioned angles of 60, 15, etc. While you can specify any
angle you want, you only get those angles that are rational. That is,
the grid on the printer is fixed. If you specify something that
doesn't
 exactly line up to the grid, the software adjusts the values
so the corners of the halftone cell aligns precisely on the grid.

To put it another way, if you picture a triangle, the angle is always
90 degrees, and the width and height are always integer values on the
grid. A 45 degree triangle has the height and width the same
 integer.
If the height is twice the width, (or vice versa) the angle is 26.5651
or 63.4349. Where did this number come from, and how does it relate
to the frequency? Well, it's trigonometry. Don't desert me
 now, after
all we've been through. It's really simple. I will use some formulas,
but all you need to know is how to plug the numbers into a
calculator. First, let me show you a right angle, and how the
 angles
and sides relate:

(see diagram #3)

Assume a right angle triangle, with height "x" and width "y", then the
tangent of the angles are x/y and y/x. Why? Because that is how
tangents were defined. If you ask a calculator for the tangent of an

angle, it is equal to the height of the triangle divided by the
width. But forget the tangent, because you don't need it. What you
really want is the inverse function, called the arctangent. Many
calculators
 have this function, usually called "ATAN". This is a very
popular function, as it lets you calculate the angle from the height
and width. Simply put,

		 ATAN(h/w) = angle1
		 ATAN(w/h) = angle2

Given a triangle that is two pixels wide and one pixel high, divide
one number by the other, and take the ATAN of the number. Therefore:

		 ATAN(2/1) == ATAN(2) == 63.4349 degrees
		 ATAN(1/2) == ATAN(0.5) == 26.5651 degrees

Therefore these are the real angles that can be used for a screen
function. How does this relate to frequency? Well, if you remember the
Pythagorean Theorem, the length of the third side of this angle, or

length of all right triangles are defined by

		 length 2 = height 2 * width 2

Or

	 hypotenuse = square root (h2 * w2).

This formula gives the width of an theoretical square cell. Hang on,
we're almost done. The hard part is over. Remember how you divide the
DPI by the cell width to get the frequency? Well, it's the same
 for
these odd angles. It's just that the cell width is a funny number. The
exact formula for legal halftone angles is apparently a secret,
because every book I checked, and every person I asked, didn't know

it. Here it is :

	 Given
		 height = an integer
		 width = an integer

then

	 cellwidth = square root (height2+ width2)
	 angle = arctangent(height/width)
	 frequency = DPI/cellwidth

Having a table that lists every legal angle and frequency combination
can be very useful. Nowhere else can you get this inside
information! There are other reasons this table is useful. But I won't
tell you
 yet. First, you have to memorize these numbers below. Just
kidding! The combinations are there when you need them. I created the
table so you don't need to know the formula above. (Am I a nice guy or

what?) And there are other useful pieces of information they will help
provide.

I didn't list every combination. I only listed those that used a cell
16 by 16 or smaller. Having a larger cell won't help, because a Level
1 PostScript printer only supports 256 different shades of gray. I
also
 didn't list cells made up by doubling the size of a smaller
cell. This would make the table twice the size, and your screen is too
small as it is.

This table lists each angle, and the equivalent angles (by rotating 90
degrees, and taking the mirror image). So this table shows the basic
angle, the three equivalent angles, the width and height of the

triangle, the width of the cell and corresponding frequency:

Table A

Rational angle/frequency combinations for a 300 DPI printer
Angle 90-angle 90+angle 180-angle x y Cellwidth Frequency

0.0000 90.0000 90.0000 180.0000 1 0 1.0000 300.0000
45.0000 45.0000 135.0000 135.0000 1 1 1.4142 212.1320
26.5651 63.4349 116.5651 153.4349 2 1 2.2361 134.1641
18.4350 71.5650 108.4350 161.5650 3 1 3.1623 94.8683
33.6901 56.3099 123.6901 146.3099 3 2 3.6056 83.2050
14.0363 75.9637 104.0363 165.9637 4 1 4.1231 72.7607
36.8699 53.1301 126.8699 143.1301 4 3 5.0000 60.0000
11.3099 78.6901 101.3099 168.6901 5 1 5.0990 58.8348
21.8014 68.1986 111.8014 158.1986 5 2 5.3852 55.7086
30.9638 59.0362 120.9638 149.0362 5 3 5.8310 51.4496
38.6598 51.3402 128.6598 141.3402 5 4 6.4031 46.8521
9.4623 80.5377 99.4623 170.5377 6 1 6.0828 49.3197
39.8056 50.1944 129.8056 140.1944 6 5 7.8102 38.4111
8.1301 81.8699 98.1301 171.8699 7 1 7.0711 42.4264
15.9454 74.0546 105.9454 164.0546 7 2 7.2801 41.2082
23.1986 66.8014 113.1986 156.8014 7 3 7.6158 39.3919
29.7449 60.2551 119.7449 150.2551 7 4 8.0623 37.2104
35.5377 54.4623 125.5377 144.4623 7 5 8.6023 34.8743
40.6013 49.3987 130.6013 139.3987 7 6 9.2195 32.5396
7.1250 82.8750 97.1250 172.8750 8 1 8.0623 37.2104
20.5561 69.4439 110.5561 159.4439 8 3 8.5440 35.1123
32.0054 57.9946 122.0054 147.9946 8 5 9.4340 31.7999
41.1860 48.8140 131.1860 138.8140 8 7 10.6301 28.2216
6.3402 83.6598 96.3402 173.6598 9 1 9.0554 33.1295
12.5288 77.4712 102.5288 167.4712 9 2 9.2195 32.5396
23.9625 66.0375 113.9625 156.0375 9 4 9.8489 30.4604
29.0546 60.9454 119.0546 150.9454 9 5 10.2956 29.1386
37.8750 52.1250 127.8750 142.1250 9 7 11.4018 26.3117
41.6336 48.3664 131.6336 138.3664 9 8 12.0416 24.9136
5.7106 84.2894 95.7106 174.2894 10 1 10.0499 29.8511
16.6993 73.3007 106.6993 163.3007 10 3 10.4403 28.7348
34.9920 55.0080 124.9920 145.0080 10 7 12.2066 24.5770
41.9872 48.0128 131.9872 138.0128 10 9 13.4536 22.2988
5.1944 84.8056 95.1944 174.8056 11 1 11.0454 27.1607
10.3049 79.6951 100.3049 169.6951 11 2 11.1803 26.8328
15.2551 74.7449 105.2551 164.7449 11 3 11.4018 26.3117
19.9831 70.0169 109.9831 160.0169 11 4 11.7047 25.6307
24.4440 65.5560 114.4440 155.5560 11 5 12.0830 24.8282
28.6105 61.3895 118.6105 151.3895 11 6 12.5300 23.9426
32.4712 57.5288 122.4712 147.5288 11 7 13.0384 23.0089

Postscript Halftones

http://www.grymoire.com/Postscript/Halftones.html[06/12/14 12:53:31]

36.0274 53.9726 126.0274 143.9726 11 8 13.6015 22.0564
39.2894 50.7106 129.2894 140.7106 11 9 14.2127 21.1079
42.2737 47.7263 132.2737 137.7263 11 10 14.8661 20.1802
4.7636 85.2364 94.7636 175.2364 12 1 12.0416 24.9136
22.6199 67.3801 112.6199 157.3801 12 5 13.0000 23.0769
30.2565 59.7435 120.2565 149.7435 12 7 13.8924 21.5945
4.3987 85.6013 94.3987 175.6013 13 1 13.0384 23.0089
8.7462 81.2538 98.7462 171.2538 13 2 13.1529 22.8086
12.9946 77.0054 102.9946 167.0054 13 3 13.3417 22.4860
17.1027 72.8973 107.1027 162.8973 13 4 13.6015 22.0564
21.0375 68.9625 111.0375 158.9625 13 5 13.9284 21.5387
24.7752 65.2248 114.7752 155.2248 13 6 14.3178 20.9529
28.3008 61.6992 118.3008 151.6992 13 7 14.7648 20.3186
31.6075 58.3925 121.6075 148.3925 13 8 15.2643 19.6537
34.6952 55.3048 124.6952 145.3048 13 9 15.8114 18.9737
4.0856 85.9144 94.0856 175.9144 14 1 14.0357 21.3741
12.0948 77.9052 102.0948 167.9052 14 3 14.3178 20.9529
19.6538 70.3462 109.6538 160.3462 14 5 14.8661 20.1802
3.8141 86.1859 93.8141 176.1859 15 1 15.0333 19.9557
7.5946 82.4054 97.5946 172.4054 15 2 15.1327 19.8246
14.9314 75.0686 104.9314 165.0686 15 4 15.5242 19.3247

Phew! On a 300 DPI printer, there are 61 unique combinations. Now
some of you may consider me to have a case of obsessive/compulsive
behavior for listing all of them. Wrong-o. There are 51 additional

combinations I didn't list, but could have, thank-you-very-much. (I do
have some sensitivity to the readers, despite what the editors think).

As you recall, you can double the cell size, and half the frequency.
Therefore, while I have listed one halftone screen at 45 degrees,
there are eleven more frequencies which also work with 45 degrees.

There are more than eleven, but again I limited this list to those
cells smaller than 16 by 16. (See Table B)

Obviously, a frequency of 212.1320 isn't very useful, as there are
only two colors. I also expect the smaller frequencies to be less
useful, as it may be hard to distinguish between 128 shades of gray
and
 256 shades.

Table B

Halftone cell sizes for 300 DPI printer
Angle H W Cellwidth Frequency

45.0000 1 1 1.4142 212.1320
45.0000 2 2 2.8284 106.0660
45.0000 3 3 4.2426 70.7107
45.0000 4 4 5.6569 53.0330
45.0000 5 5 7.0711 42.4264
45.0000 6 6 8.4853 35.3553
45.0000 7 7 9.8995 30.3046
45.0000 8 8 11.3137 26.5165
45.0000 9 9 12.7279 23.5702
45.0000 10 10 14.1421 21.2132
45.0000 11 11 15.5563 19.2847

Table B lists the valid frequencies for a 45 degree angle. 26.5 degrees has 6 different frequencies, 18.4 has 4, 33.69 has 3, 14.0, 38.9 and 11.3 have 2, while 21.8, 30.9, 38.6, 9.6, 39.8, 8.1 and 15.9 have
 one more frequency not listed.

Now that I've listed them, what can be done with these numbers?
Especially if one doesn't have a printer with the same
resolution. Here's the real secret - the resolution of the printer
doesn't matter. The
 angles and cell width are the same. A 1 by 3
triangle always makes an angle of 18.4350, and a 3 by 1 triangle
always makes the angle of 71.5650. The DPI will change the frequency,
but you can calculate
 that by simply doubling or halving the
frequency. Let me show you.

Here is a table for a 600 DPI printer, with the angle of 45 degrees.

Table C

Halftone cell sizes for 600 DPI printer
Angle H W Cellwidth Frequency

45.0000 1 1 1.4142 424.2641
45.0000 2 2 2.8284 212.1320
45.0000 3 3 4.2426 141.4214
45.0000 4 4 5.6569 106.0660
45.0000 5 5 7.0711 84.8528
45.0000 6 6 8.4853 70.7107
45.0000 7 7 9.8995 60.6092
45.0000 8 8 11.3137 53.0330
45.0000 9 9 12.7279 47.1405
45.0000 10 10 14.1421 42.4264
45.0000 11 11 15.5563 38.5695

The frequencies change, but for each frequency at 300 DPI, the same
frequency at 600 DPI doubles the cell width, which gives you 4 times
the number of gray values. A 600 DPI printer has more
 combinations
with a higher resolution, but the angles remain the same.

All together, there are 61 primary angle/frequencies, and multiples of
the integers gives 51 additional combinations. The total remains the
same at higher DPI, because there are a fixed number of

combinations. Therefore there are 112 different angle/frequency
combinations that generate cells smaller that 16 by 16 pixels, and
table A lists all of the root angle/frequency combinations for a
300 DPI
 printer.

What else can be done with this table? How does the theoretical values
compare to the real values? Let's look at the 5 combinations Apple
uses. This time, I will fill in the exact angle and frequency, as
well
 as the cell width (using Table A of course)

Angle Frequency Cell Width Shades of Gray
45.0 53.0330 5.6569 33
0.0 75.0000 4 17
56.3099 83.2050 3.6056 14
45.0 106.0660 2.8284 9
0.0 150.0000 2 5

Now these numbers make a lot more sense. I counted the number of gray
values by eye, and indeed, as the frequency increases, the shades of
gray decrease. Angles 45 are preferred, and the angle of
 56.3 is close
to 45, which is why it was selected.

One piece of information that is very useful is determining how many
different pixels are in each cell, which give you the shades of gray
for each combination. Previously, I knew of three methods to

calculate this. The first is to print it and count the number of
grays. This is what my PostScript program below does. The second is
to draw the square cell on the grid, and count the cells whose center
is
 exactly inside the square. The third method is to work for a
company that developed PostScript interpreters, and learn the secrets.
This is highly confidential information. I could quit my job, join
one of
 these companies, learn the secrets, tell you, and get
sued. Well, maybe not.

All three methods were very unsatisfying. Now, I know you can
calculate the number of pixels in a cell at angle 0 by using n
squared. But what about these odd cells at a funny angle?

You know what? It works! The cell width, squared, plus one gives you
the number of gray values. The trick, never before revealed, is to
know the exact width and Table A provides this information.
The cell
 width squared is also x squared + y squared, so you
can take the two numbers from the table above, square each, add then
together, and add one to get the numbers of available gray
values. This
 surprised me at first, but if I stare at the numbers long
enough, I'm sure it will make sense. Armed with this information,
let's look at some other numbers Adobe uses for color separations.

Postscript Halftones

http://www.grymoire.com/Postscript/Halftones.html[06/12/14 12:53:31]

When Adobe Separator creates four separate screens, it reads the
Postscript Printer Description (or PPD) file to learn the
characteristics of the printer which will print the separations.
These PPD files are
 ASCII files, and on a Macintosh, there are stored
in the printer description folder, inside the extension folder, inside
the system folder. If all else fails, access the Adobe FTP site ftp.adobe.com
in the
 /pub/adobe/printerdrivers directory, for hundreds of printers. I found the following set of lines inside
the file for my old Apple LaserWriter Pro 630:

*% For 53 lpi / 300 dpi ===============================

*ColorSepScreenAngle ProcessBlack.53lpi.300dpi/53 lpi / 300 dpi: "45.0"
*ColorSepScreenAngle CustomColor.53lpi.300dpi/53 lpi / 300 dpi: "45.0"
*ColorSepScreenAngle ProcessCyan.53lpi.300dpi/53 lpi / 300 dpi: "71.5651"
*ColorSepScreenAngle ProcessMagenta.53lpi.300dpi/53 lpi / 300 dpi: "18.4349"
*ColorSepScreenAngle ProcessYellow.53lpi.300dpi/53 lpi / 300 dpi: "0.0"

*ColorSepScreenFreq ProcessBlack.53lpi.300dpi/53 lpi / 300 dpi: "53.033"
*ColorSepScreenFreq CustomColor.53lpi.300dpi/53 lpi / 300 dpi: "53.033"
*ColorSepScreenFreq ProcessCyan.53lpi.300dpi/53 lpi / 300 dpi: "47.4342"
*ColorSepScreenFreq ProcessMagenta.53lpi.300dpi/53 lpi / 300 dpi: "47.4342"
*ColorSepScreenFreq ProcessYellow.53lpi.300dpi/53 lpi / 300 dpi: "50.0"

This specifies the precise combinations used for a frequency of 53
LPI. The value the person expects are first, while the exact values
are in quotation marks. As I mentioned earlier, the process color and

black are the same angle. These angles are not quite 15 and 75
degrees, but they are close. Using the information above, and Table
A, the 4 screens are

Color Angle Frequency Cell width Number of colors
Black 45 53.033 5.6569 33
Process 45 53.033 5.6569 33
Cyan 71.5651 47.4342 6.3246 40
Magenta 18.4349 47.4342 6.3246 40
Yellow 0 50 6 37

Aha! There is some interesting information here. The frequency of
yellow is 8% smaller than black. (This is a technique Adobe
recommends, as I mentioned earlier). The frequency of cyan and
magenta is
 8% smaller than yellow. As you can see, the number of
colors for magenta or cyan are 1/3rd of the number of black (or
process color) values. Hmmm.

This demonstrates why it might be necessary to swap halftone screens
around, to eliminate moiré and banding problems. If you used the
standard patterns above, and your print contains a lot of flesh
 tones,
you might notice some moiré patterns. This is because these tones
are made from yellow and magenta, which only have a 18 degree
difference. In this case, many professionals will switch the
 screens
around, so that magenta is at 45 degrees, and black is at 75
degrees. This reduces the change of moiré patterns between yellow
and magenta, because these angles are 45 degrees apart, the
 perfect
angle! You can also see that this increases the number of colors of
magenta, which is very important when it is desirous to have a
high-quality flesh tones. This magenta for black swap is common
 for
these reasons.

Another swap discussed is cyan for yellow. Therefore magenta and
yellow are about 53 degrees apart, which does reduce the moirés in
flesh tones. In addition, there is an increased change of moirés

between cyan and yellow, as these screens are only 18 degrees
apart. If you have a lot of green, this may increase the moiré
patterns. This combination also doesn't give as many flesh values as
the first
 variation, as there are only 11 * 11 combinations, instead
of 33 * 37 combinations. I've read about these two different halftone
swaps, but the books didn't explain the number of combination
advantage
 swapping magenta/black swap has over swapping
cyan/yellow. Table A, however, does show this advantage, once you
understand how to use it. (I told you the table would be useful).

Looking at the above table, the halftone screen angle of 15.9454 (or
74.0546) and frequency 41.2082 might be useful. It is very close to
15/75 degrees, has 53 different values, and a slightly larger

resolution of 41.2082 LPI. But that's only the theoretical guess. It
might be worth experimentation, don't you think? It would be very hard
to discover this combination by trial and error. Table A gives you

freedom to experiment.

Remember, the information in Table A can be used for any
resolution. Just multiply the cell width by 2, and divide the
frequency by 2, for 600 DPI printers. 1200 DPI devices change the
numbers by 4. 800
 DPI devices changes the values by 800/300, etc.

There are two more points worth mentioning: you can always edit the
PPD file if you use Adobe Separator to create special halftone
screens. And if that doesn't work, save the output to a file, and
edit it by
 hand.

The second point, and more important, is that halftone screens come
from the analog days. Many print shops are unaware of the exact
relationship between angles and frequencies. They may think the

frequency is 53 LPI, but as the above example shows, they may get
47.4342 LPI. However, if you insist on being precise, and after
reading this article you will be an expert, you might get a reputation
as a
 smarty-pants

Spot Functions

Spot function - what are they? A digital approximation of an analog
value. Typically it is a dot, whose size grows as the color approaches
black. When setting halftone screens in PostScript, a function is

specified. I won't go into too much detail here, except that I will
mention several different spot functions, and you can try them out to
see how they differ. The book "Real World Scanning and Halftones"

lists several other spot functions you can try, including some fancy
novelty shapes like butterflies and propellers. I don't want to go
into too much detail, so I will mention that bad spot functions show
up
 on blends, by creating noticeable changes at a particular place in
the blend. If a simple dot function is used, there will be a
noticeable change when the dots touch for the first time. Some use
elliptical
 spots, which delay the time the spots touch, but they
eventually do, and this eventually causes a noticeable change in the
blend.

The most popular dot function, and the default in most printers, is
the Euclidean spot. This changes shape several times as it varies from
white to black. It starts out round, and when 50% is reached, it

transforms into square. Later, it changes into a black square with a
white dot. By transforming two times, the transformations are less
noticeable, and therefore better.

If you want to see what the spot function does, print something using
a very small LPI value. Ten lines per inch means each spot is 1/10th
of an inch in size. This makes them easy to see, and easier to

understand.

Experimentation Begins

Enough theory. Time to experiment with different values. First, I have
to discuss the PostScript code. Setting the halftone screen in a Level
1 PostScript printer follows the following format:

frequency angle procedure setscreen

where a real example looks like:
53 45 {pop} setscreen
The procedure sets the halftone screen to 45 degrees, and 53 DPI. The
spot function is a primitive one that ignores one of the two
coordinates, and
 therefore creates lines on the screen instead of
spots.
I am going to use a slightly different format, for reasons you will
soon understand. I will define each spot function, and give it a name,
i.e.:

/spot_line {
	 pop
} def

I could define a spot function and load it by executing 53 45 /spot_line load setscreen
But instead I will use the following PostScript code:

/ScreenSet {
	 % set screen function
	 % frequency angle /spot_function ScreenSet =
	 dup str cvs /SpotFunctionName exch def
	 load setscreen
} def

53 45 /spot_line ScreenSet

The difference between the two is this last one stores the name of the
function in a variable called "SpotFunctionName". The reason I do
this is because I will now describe a test program that prints out
 100
values of gray, and also prints out the exact halftone screen used to
generate the test pattern. I call this procedure "PrintPage". It
prints out a matrix of gray squares, with 100 different values. The

value of each square will be labeled, and the end squares will be
duplicated on the next line, so you can see the effects of
banding. The program also prints out the screen angle, frequency and
name of the
 spot function. Trust me, when you have a stack of 100
different pieces of paper, it's easier to keep track of the
differences when the values are automatically on the page. The program
also prints out the
 time it takes to construct each screen. Some
halftone screens are pre-built for efficiency. By printing out the
rendering time, you can see how expensive each combination is.

The final part of the code exercises different halftone screens. There
are hundreds of combinations, so I will only give you a sample. I urge
you to experiment with different devices, different paper, and

different screens.

Earlier I mentioned 5 different screen values for the Apple
printers. To print out a sample page for each one, use the following:

53 45 /spot_euclid 	 ScreenSet PrintPage
75 0 /spot_euclid 	 ScreenSet PrintPage
83 56 /spot_euclid 	 ScreenSet PrintPage
106 45 /spot_euclid	 ScreenSet PrintPage
150 0 /spot_euclid 	 ScreenSet PrintPage

To try the 10 different spot function I list below, use

53 45 /spot_round 		 ScreenSet PrintPage

Postscript Halftones

http://www.grymoire.com/Postscript/Halftones.html[06/12/14 12:53:31]

53 45 /spot_iround 		 ScreenSet PrintPage
53 45 /spot_euclid 		 ScreenSet PrintPage
53 45 /spot_rhomboid 	 ScreenSet PrintPage
53 45 /spot_line 		 ScreenSet PrintPage
53 45 /spot_diamond 	 ScreenSet PrintPage
53 45 /spot_iellipt 	 ScreenSet PrintPage
53 45 /spot_rb 		 ScreenSet PrintPage
53 45 /spot_linea 		 ScreenSet PrintPage
53 45 /spot_lineb 		 ScreenSet PrintPage

The code above is at the end of the file, and prints out 15 pages. You
can add as many additional combinations as you wish. (Let's see now,
112 different screens and 11 different spot functions. Well, you
 can
print them all out if you wish.)

One more point. You can include the minimal code above before any
PostScript code, and unless the file explicitly sets the halftone
screen, you can specify the halftone screen to be precisely what you

want. Therefore you can test it with scanned photographs or any other
test you can think of, and see if certain halftone screens allow you
to duplicate images better than others.
Here's the halftone test
 program. It prints out 100 different shades
of gray on a single sheet of paper. You can use this to see how many
different grays you actually have (up to 100). You can also experoment
with different
 postscript options to see what impact it has on your
halftones.
Enjoy!

Example 1

%!PS-Adobe-2.0
% Sample code to explore the different screen and spot functions
% Written by Bruce Barnett
% Inspired by Michael Thorne
% PostScript Language Journal Vol 1, Number 4
%
%

% define some abbreviations

/l /lineto load def
/m /moveto load def
/rl /rlineto load def
/rm /rmoveto load def
/sg /setgray load def
/sh /show load def
/slw /setlinewidth load def
/st /stroke load def
/tr /translate load def

% and some places to store some information
/str 300 string def % define a string
/ss 50 def % defines square size
/fountstring 256 string def

% print a fountain
/PrintFountain {
	 % create a string containing values from 0 to 255
	 0 1 255 {fountstring exch dup put } for
	 % scale a 1 by 1 image to the size that will spread across the page
	 % first number is the width, second the height
	 600 45 scale
	 % construct/transform the image
	 256 1 8 [256 0 0 1 0 0] {fountstring} image
} bind def

% Print a tinted box
/TintBox { %define a tinted box, size (ss by ss)
 tint 100 div sg
 newpath
 0 0 m
 ss 0 l
 ss ss l
 0 ss l
 closepath fill
} def

/LabelBox { 			 % define a procedure to label a box
 10 ss 2 div m		 % move to (10, ss/2)

 lettercolor sg		 % select color
 tint 3 string cvs sh
 (% grey) sh
} def

/NextLine {-1 ss mul 10 mul -1 ss mul tr} def % goto next line

/NextLoc {ss 0 tr} def % goto next location (or place for a square)

/PrintMatrix {	 % define a procedure to print a row of squares
			 % if at the end of the row, go to the next line
			 % else - go to the next location
 /tint exch def
 TintBox				 % draw the box
 LabelBox				 % add the label
 /count count 1 add def		 % increase the count by one
 count 11 lt {			 % move to next spot
	 NextLoc
 } {
	 NextLine /count 0 def
 } ifelse
} def

% show details of layout (Halftone, etc.)
/ShowDetails {
	 /str 300 string def
	 100 750 m
	 (Spot Procedure Name=) show
	 /SpotFunctionName load show		 % => freq angle
	 currentscreen				 % => freq angle proc
	 pop						 % ignore procedure
	 (Angle=) show
	 str cvs show				 % => freq
	 (Frequency=) show
	 str cvs show
} bind def

% A procedure to set the screen angle
% and remember the name of the function
% so we can print it
/ScreenSet {		 % set screen function
				 % ang freq /spot_function ScreenSet
	 dup str cvs /SpotFunctionName exch def
	 load setscreen
} bind def

/PrintPage {
	 % also remember time to print page
	 /time_start usertime def
	 ShowDetails 		 % prints the halftone screen
	 gsave 		 % save the graphic state
 	 ss ss 10 mul tr
 	 0 0 m

Postscript Halftones

http://www.grymoire.com/Postscript/Halftones.html[06/12/14 12:53:31]

 	 /count 0 def
 	 /lettercolor 1 def 	 % select white letters
 	 0 1 10 {PrintMatrix} for
 	 10 1 20 {PrintMatrix} for
 	 20 1 30 {PrintMatrix} for
 	 30 1 40 {PrintMatrix} for
 	 40 1 50 {PrintMatrix} for
 	 /lettercolor 0 def 	 % change to black letters
 	 50 1 60 {PrintMatrix} for
 	 60 1 70 {PrintMatrix} for
 	 70 1 80 {PrintMatrix} for
 	 80 1 90 {PrintMatrix} for
 	 90 1 100 {PrintMatrix} for
 	 grestore 	%restore graphic state

	 gsave 	% save it again, for the fountain
		 PrintFountain
	 grestore 	% restore
	 0 sg
	 % now print the elapsed time
 	 100 775 m (elapsed time (milliseconds) =) show
	 usertime time_start sub str cvs show
	 showpage			 % print the page
} bind def	

% Here are the different spot functions
% These are suggested by Adobe

/spot_round { % simple round
		 dup mul exch dup mul add 1 exch sub
} def

% Inverted Round
/spot_iround {
		 dup mul exch dup mul add 1 sub
} def

% Euclidean Composite
/spot_euclid { % default on many new PS printers
	 abs exch abs 2 copy add 1 gt {
		 1 sub dup mul exch 1 sub dup mul add 1 sub
	 } {
		 dup mul exch dup mul add 1 exch sub
	 } ifelse
} def

% Rhomboid
/spot_rhomboid { % Rhomboid
	 abs exch abs .8 mul add 2 div
} def

% Line
/spot_line {
	 exch pop abs 1 exch sub
} def

% Diamond
/spot_diamond {
	 abs exch abs 2 copy add .75 le
		 {
			 dup mul exch dup mul add 1 exch sub
		 } {
			 2 copy add 1.25 le {
				 .85 mul add 1 exch sub
			 } {
				 1 sub dup mul exch 1 sub dup mul add 1 sub
		 } ifelse
	 } ifelse
} def

% Inverted Elliptical
/spot_iellipt {
	 dup mul .9 mul exch dup mul add 1 sub
} def

/spot_rb { % another from the "Red Book"
	 180 mul cos exch 180 mul cos add 2 div
} def

/spot_line { % simple line
	 pop
} def

/spot_line2 { % simple line going the other way
	 exch pop
} def

% End of definitions, now to print

% Use 8 point Helvetica
8 /Helvetica-Bold findfont exch scalefont setfont

% each "PrintPage" prints one test page
% Print 5 test pages or different screens
% using the same spot function

53 45		 /spot_euclid	 ScreenSet PrintPage
75 0		 /spot_euclid	 ScreenSet PrintPage
83 56		 /spot_euclid	 ScreenSet PrintPage
106 45	 /spot_euclid	 ScreenSet PrintPage
150 0		 /spot_euclid	 ScreenSet PrintPage

% Now print 10 other spot functions, same screen

53 45 	 /spot_round 	 ScreenSet PrintPage
53 45 	 /spot_iround 	 ScreenSet PrintPage
53 45 	 /spot_euclid 	 ScreenSet PrintPage
53 45 	 /spot_rhomboid 	ScreenSet PrintPage
53 45 	 /spot_line 		 ScreenSet PrintPage
53 45 	 /spot_diamond 	 ScreenSet PrintPage
53 45 	 /spot_iellipt 	 ScreenSet PrintPage
53 45 	 /spot_rb 		 ScreenSet PrintPage
53 45 	 /spot_linea 	 ScreenSet PrintPage
53 45 	 /spot_lineb 	 ScreenSet PrintPage

% I think you get the idea.....

% end of file

Example 2

 Here is a more advanced program, thay lets you
set the printer resolution It includes options to enable/disable the
Apple LaserWriter pro options. Like the first, it prints 100 values
of gray in a 10 by 10

Postscript Halftones

http://www.grymoire.com/Postscript/Halftones.html[06/12/14 12:53:31]

 grid, so you can compare the different gray values

%!PS-Adobe-2.0
%%BeginProcSet
% define some abbreviations
/f {
	 findfont exch scalefont setfont
} bind def
% now define some abbreviations
/l /lineto load def
/m /moveto load def
/rl /rlineto load def
/rm /rmoveto load def
/sg /setgray load def
/sh /show load def
/slw /setlinewidth load def
/st /stroke load def
/tr /translate load def

% and some variables

/ss 50 def % defines square size

% now for some procedures
%
/featurecleanup {

	 % this procedure is used to test for a feature,
	 % and clean up everything on the stack
	 % when done.
	 stopped
	 cleartomark
	 countdictstack exch sub dup 0 gt
	 {
		 {end}repeat
	 }{
		 pop
	 }ifelse
} bind def

% this routine only works for printers with settable resolutions
/SetResolution {	 % set resolution
			 %usage: 	 600 SetResolution =>
	 /dpi exch def	 % define first argument as dpi
	 countdictstack[{
		 1 dict dup
		 % define HardWare resolution	
		 /HWResolution [dpi dpi] put setpagedevice	
	 }featurecleanup %]
} bind def

% this routine only works for some Apple LaserWriters (LaserWriter Pro)

/SetEnhancements {	 % set FinePrint PhotoGrade
 %usage: 	 true true SetEnhancements =>
 % first bolean is FinePrint
 % second is PhotoGrade
 /PhotoGrade exch def	 % define PhotoGrade
 /FinePrint exch def		 % define FinePrint
	
% FinePrint	
 countdictstack[{	
	 2 dict
	 dup /PreRenderingEnhance FinePrint put
	 dup /PreRenderingEnhanceDetails
	 2 dict
	 dup /Type 1 put
	 dup /ActualPreRenderingEnhance FinePrint put
	 put
	 setpagedevice
 }featurecleanup %]
% photograde	
	 countdictstack[{	
	 2 dict
	 dup /PostRenderingEnhance PhotoGrade put
	 dup /PostRenderingEnhanceDetails
	 2 dict
	 dup /Type 1 put
	 dup /ActualPostRenderingEnhance PhotoGrade put
	 put
	 setpagedevice
	 }featurecleanup %]
} bind def

/TintBox { %define a tinted box, size (ss by ss)
 tint 100 div sg
 newpath
 0 0 m
 ss 0 l
 ss ss l
 0 ss l
 closepath fill
} def

/LabelBox { %define a procedure to label a box
 10 ss 2 div m		 % move to (10, ss/2)

 lettercolor sg		 % select color
 tint 3 string cvs sh
 (% grey) sh
} def

/NextLine {-1 ss mul 10 mul -1 ss mul tr} def % goto next line

/NextLoc {ss 0 tr} def % got next location

/PrintMatrix { %define a procedure to print a square
 /tint exch def
 TintBox
 LabelBox
 /count count 1 add def
 count 11 lt
 {NextLoc}
 {NextLine /count 0 def} ifelse
} def

% This procedure only works for some systems
% On other systems, it prints a "?"

/PrintProc {	 % Print a procedure
	 % usage:	 proc PrintProc =>
	 % Normally, you could use the pstack or == operators
	 % to print a procedure. However, this sends the information to
	 % the PostScript log. I don't want it there. I want it on the page

Postscript Halftones

http://www.grymoire.com/Postscript/Halftones.html[06/12/14 12:53:31]

	 % Therefore, I will use the little documented dictionary ==dict
	 % and command typeprint.
	 % See "Inside Postscript" page 6-3

	
	 currentdict /==dict known {
		 ==dict begin
			 typeprint
		 end
	 }{
		 pop (?) show
	 } ifelse
} bind def

% show details of layout (Halftone, etc.)
/ShowDetails {
	 /str 300 string def

	 100 750 m

% what is the product
	 level2 {

		 (Product=) show
		 systemdict /product get 			 str cvs show
		
		 (PostScript level=) show
		 systemdict /languagelevel get	 str cvs show

		 (Revision=) show
		 systemdict /revision get 		 str cvs show
		
		 (Serial Number=) show
		 systemdict /serialnumber get 	 str cvs show		
	 }{
		 (PostScript Level 1) show
	 } ifelse
	
% Second - print the current halftone setup
	 100 725 m
	 level2 { %ifelse
		 % Postscript Level 2 has 5 types of halftone
		 % must get dictionary to determine which type
		
		 currenthalftone	begin	 % get halftone dict
		 /HalftoneType load 		 % => HalftoneType
		 dup 1 eq {				 % if type 1
			 (Frequency=) show	 Frequency str cvs show
			 (Angle=) show	 Angle str cvs show
			 (SpotFunction=) show	/SpotFunction load PrintProc
		 } if
		 % HalftoneType still on the stack
		 dup 3 eq { % if dithered
			 (Dithered Halftone) show
			 (Height=) show	 Height str cvs show
			 (Width=) show	 Width str cvs show
			 (Array = [) show

			 % show the array
			 1 1 Height {		 % go from 0 .. Height -1					 1 add
				 /h exch def	 % h = height
				 % remember currentpoint
				 currentpoint /curr_y exch def /curr_x exch def

				 1 1 Width {	 % go from 0 .. Width-1
					 /w exch def		 %w = width
					 % calculate index into threshold array
					 % i=(h-1)*(Height) + (w -1)
					 h -1 add Height mul w -1 add add /i exch def	
					 /Thresholds load i get	 % => threshold_value
					 str cvs show () show
				 } for
				 curr_x curr_y moveto
				 0 -10 rmoveto		 % move 10 points down
			 } for
			 (]) show
		 } if	
		 % if type 2, 4 or 5, ignore		
		 pop
		 end	 % dictionary
	 }{
		 % PostScript level 1 only has one type of halftone
		 currentscreen	 % => freq angle proc
		 (Spot Procedure=) show
		 PrintProc	 % => freq angle

		 (Angle=) show
		 str cvs show	 % => freq
		 (Frequency=) show
		 str cvs show
	 } ifelse
	

	 level2 {
		 100 700 m
			 currentpagedevice /HWResolution known { %if
			 currentpagedevice
				 (Resolution=) show	 %	
				 /HWResolution get	 % => [dpi dpi]
				 dup 1 get str cvs show
				 (by) show
				 1 get str cvs show			
		 } if

		 100 675 m
			
 		 currentpagedevice /PreRenderingEnhance known { %if
			 currentpagedevice
				 (FinePrint=) show	 %	
				 /PreRenderingEnhance get	 str cvs show		
		 } if
 		 currentpagedevice /PostRenderingEnhance known { %if
			 currentpagedevice
				 (PhotoGrade=) show	 %	
				 /PostRenderingEnhance get	 str cvs show		
		 } if
	 } if
} bind def

/PrintPage {
	 ShowDetails
	 gsave
 	 ss ss 10 mul tr
 	 0 0 m
 	 /count 0 def
 	 /lettercolor 1 def % select white letters

Postscript Halftones

http://www.grymoire.com/Postscript/Halftones.html[06/12/14 12:53:31]

 	 0 1 10 {PrintMatrix} for
 	 10 1 20 {PrintMatrix} for
 	 20 1 30 {PrintMatrix} for
 	 30 1 40 {PrintMatrix} for
 	 40 1 50 {PrintMatrix} for
 	 /lettercolor 0 def % change to black letters
 	 50 1 60 {PrintMatrix} for
 	 60 1 70 {PrintMatrix} for
 	 70 1 80 {PrintMatrix} for
 	 80 1 90 {PrintMatrix} for
 	 90 1 100 {PrintMatrix} for
 	 grestore
	 0 sg

	 showpage	 % print the page
} bind def	

% here are various spot functions.

/spot1 {
		 dup mul exch dup mul add 1 exch sub } def

% simple round
/spot2 {
		 dup mul exch dup mul add 1 exch sub } def
% Inverted Round
/spot3 {
		 dup mul exch dup mul add 1 sub } def
% Euclidean Composite
/spot4 {
		 abs exch abs 2 copy add 1 gt
	 { 1 sub dup mul exch 1 sub dup
	 mul add 1 sub }
	 { dup mul exch dup mul add 1 exch sub }
	 ifelse } def
% Rhomboid
/spot5 {
	 abs exch abs .8 mul add 2 div } def
% Line
/spot6 {
	 exch pop abs 1 exch sub } def
% Diamond
/spot7 {
	 abs exch abs 2 copy add .75 le
		 {
			 dup mul exch dup mul add 1 exch sub
		 } {
			 2 copy add 1.25 le
				 { .85 mul add 1 exch sub }
				 { 1 sub dup mul exch 1 sub dup mul add 1 sub }
		 ifelse }
	 ifelse
	 } def
% Inverted Elliptical
/spot8 {
	 dup mul .9 mul exch dup mul add 1 sub
} def

% here are the Halftone dictionaries
/HalfDict_2 4 dict def
HalfDict_2 begin
	 /HalftoneType 3 def
	 /Width 2 def
	 /Height 2 def
	 /Thresholds (\000\100\200\300) def
end
/HalfDict_3 4 dict def
HalfDict_3 begin
	 /HalftoneType 3 def
	 /Width 3 def
	 /Height 3 def
	 % \252\343\161\034\000\125\216\070\307
	 % \006\010\004\001\000\003\005\002\007
% this is in linear order
%	 /Thresholds (\000\034\071\125\162\216\253\307\344) def	
% this is in dithered order
	 /Thresholds (\252\343\161\034\000\125\216\070\307) def
	 end
/HalfDict_4 4 dict def
HalfDict_4 begin
	 /HalftoneType 3 def
	 /Width 4 def
	 /Height 4 def
% dither array
%\000\010\002\012\014\004\016\006\003\013\001\011\017\007\015\005
% dither array scaled to values from 0-255 (\000-\377 octal)
%\000\200\040\240\300\100\340\140\060\260\020\220\360\160\320\120

%	 /Thresholds (\000\020\040\060\100\120\140\160\200\220\240\260\300\320\340\360) def
	 /Thresholds (\000\200\040\240\300\100\340\140\060\260\020\220\360\160\320\120) def
end
/HalfDict_5 4 dict def
HalfDict_5 begin
	 /HalftoneType 3 def
	 /Width 5 def
	 /Height 5 def
	 /Thresholds (\000\012\024\037\051\063\075\110\122\134\146\161\173\205\217\232\244\256\270\303\315\327\341\354\366) def
end
/HalfDict_6 4 dict def
HalfDict_6 begin
	 /HalftoneType 3 def
	 /Width 6 def
	 /Height 6 def
	 /Thresholds (\000\007\016\025\034\044\053\062\071\100\107\116\125\134\144\153\162\171\200\207\216\225\234\244\253\262\271\300\307\316\325\334\344\353\362\371) def
end
/HalfDict_7 4 dict def
HalfDict_7 begin
	 /HalftoneType 3 def
	 /Width 7 def
	 /Height 7 def
	 /Thresholds (\000\005\012\020\025\032\037\045\052\057\064\071\077\104\111\116\124\131\136\143\150\156\163\170\175\203\210\215\222\230\235\242\247\254\262\267\274\301\307\314\321\326\333\341\346\353\360\366\373) def
end
/HalfDict_8 4 dict def
HalfDict_8 begin
	 /HalftoneType 3 def
	 /Width 8 def
	 /Height 8 def
	 /Thresholds
(\000\200\040\240\010\210\050\250\300\100\340\140\310\110\350\150\060\260\020\220\070\270\030\230\360\160\320\120\370\170\330\130\014\214\054\254\004\204\044\244\314\114\354\154\304\104\344\144\074\274\034\234\064\264\024\224\374\174\334\134\364\164\324\124)
 	 def
%\000\040\010\050\002\042\012\052\060\020\070\030\062\022\072\032\014\054\004\044\016\056\006\046\074\034\064\024\076\036\066\026\003\043\013\053\001\041\011\051\063\023\073\033\061\021\071\031\017\057\007\047\015\055\005\045\077\037\067\027\075\035\065\025

%	 /Thresholds

Postscript Halftones

http://www.grymoire.com/Postscript/Halftones.html[06/12/14 12:53:31]

(\000\004\010\014\020\024\030\034\040\044\050\054\060\064\070\074\100\104\110\114\120\124\130\134\140\144\150\154\160\164\170\174\200\204\210\214\220\224\230\234\240\244\250\254\260\264\270\274\300\304\310\314\320\324\330\334\340\344\350\354\360\364\370\374)
 def
end
					
%%EndProcSet

userdict begin
	 systemdict /languagelevel known {
		 /level2 true def
	 }{	
		 /level2 false def
	 } ifelse
end

% select font
8 /Helvetica-Bold f

%%EndSetup
%%BeginProgram

% the following are for Apple's Pro printers only
%300 SetResolution
%true true SetEnhancements
% or
%false false SetEnhancements
%600 SetResolution

% the following pairs are suggested for 300 dpi
% frequency		 53	 75	 83	 106	 150
% angle			 45	 0	 56	 45	 0

%53 45 /spot1 load setscreen PrintPage
%75 0 /spot1 load setscreen PrintPage
%83 56 /spot1 load setscreen PrintPage
%106 45 /spot1 load setscreen PrintPage
%150 0 /spot1 load setscreen PrintPage

% now for the Level 2 halftone dictionaries...

%HalfDict_3 sethalftone PrintPage	
%HalfDict_4 sethalftone PrintPage
%HalfDict_5 sethalftone PrintPage
%HalfDict_6 sethalftone PrintPage
%HalfDict_7 sethalftone PrintPage
%HalfDict_8 sethalftone PrintPage
%150 0 /spot5 load setscreen PrintPage

%true true SetEnhancements
%300 SetResolution
%HalfDict_8 sethalftone PrintPage
false false SetEnhancements
600 SetResolution
HalfDict_8 sethalftone

PrintPage

%%EndProgram
%%Trailer

	grymoire.com
	Postscript Halftones

